John Z. Zhang ROBOTICS · OPTIMIZATION · CONTROL

358 S Atlantic Ave Floor 3, Pittsburgh, PA, 15224

🛛 (+1) 215-460-8897 | 🜌 johnzhang@cmu.edu | 🏘 johnzhang3.github.io | 🖸 johnzhang3 | 🛅 john-zhang-01

Summary_

I am a second-year Master's student in Robotics at Carnegie Mellon University, advised by Professor Zachary Manchester. My research focuses on principled algorithms that enable intelligent robot behavior and decision-making capabilities. My expertise lies in numerical optimization, deep learning, and control. I am currently applying for Ph.D. programs in Mechanical Engineering, Robotics, and Computer Science.

Education

Carnegie Mellon University

M.S. IN ROBOTICS

- Model-Predictive Control, Motion Imitation, Numerical Optimization
- Advisor: Dr. Zachary Manchester
- Thesis Title: (Tentative) Toward Generalized Legged Agility
- GPA: 4.0/4.0

Georgia Institute of Technology

B.S. IN MECHANICAL ENGINEERING

- Multi-Agent Communication, Trajectory Optimization through Contact
- Advisors: Dr. Matthew Gombolay, Dr. Ye Zhao
- Highest Honors, GPA:3.9/4.0, Minor in Computer Science

Academic Experience _

Robotic Exploration Lab, Carnegie Mellon University

GRADUATE RESEARCH ASSISTANT

- Motion imitation from monocular videos for legged robots
- · Fast motion planning and state estimation through contact for legged robots
- GPU-accelerated Quadratic Programming solver for model-predictive control

C.O.R.E. Robotics Lab, Georgia Institute of Technology

RESEARCH SCIENTIST

- Developed novel deep graphical neural network architecture for end-to-end Multi-Agent Reinforcement Learning (MARL) of communication policies among heterogeneous agents in collaborative teams
- Our algorithm outperformed state-of-the-art benchmarks in multiple partially observable multi-agent domains, including predator-prey, predator capture, and StarCraft Multi-Agent Challenge

C.O.R.E. Robotics Lab, Georgia Institute of Technology

Undergraduate Research Assistant

- Developed Neural Network-based Model Predictive Controller for high dimensional dynamics systems
- Empirically validated both meta-active learning and model predictive control algorithms on a physical RC quad-copter

L.I.D.A.R. Lab, Georgia Institute of Technology

Undergraduate Research Assistant

- Developed novel algorithms for trajectory optimization through contact under uncertainty
- Demonstrated trade-off between trajectory robustness and feasibility in a robust optimal control problem with intermittent contact

School of Mechanical Engineering, Georgia Institute of Technology

TEACHING ASSISTANT

- Course: ME 3017 System Dynamics. Fall 2020 and Spring 2021
- Served as head TA for two semesters during COVID. Responsibility included: holding weekly office hours, grading homework and exams, writing exams, and handling course logistics

Industry Experience

Dynamic Systems and Controls Team, Cummins Inc.

Software Engineering Intern

- Developed Kalman Filter and Gaussian Process Regression algorithms for online vehicle acceleration estimation
- Implemented my estimation algorithm in the existing vehicle framework
- Successfully tested the new controls framework on vehicle and demonstrated improved acceleration performance
- Presented internship project entitled Novel Methods for Online Acceleration Filtering and Estimation

Aug. 2018 - May. 2022

Pittsburgh, PA Aug. 2022 - present

Atlanta, GA

Atlanta, GA

Atlanta, GA

May. 2022 - Aug. 2022

Jan. 2021 - May. 2022

ontact

Aug. 2019 - Dec. 2021

Atlanta, GA Aug 2020 - May 2021

Columbus, IN May. 2021 - Aug. 2021

Atlanta, GA

Publications

	ReLU-QP: A GPU-Accelerated Quadratic Programming Solver for Model-Predictive Control, Arun	
2023	Bishop*, John Zhang* , Swaminathan Gurumurthy, Kevin Tracy, Zachary Manchester.(*equal contribution).	
	under review at ICRA	
2023	SLoMo: A General System for Legged Robot Motion Imitation from Casual Videos, John Zhang, Shuo	
	Yang, Gengshan Yang, Arun Bishop, Swaminathan Gurumurthy, Deva Ramanan, Zachary Manchester. IEEE	Yokohama, Japan
	Robotics and Automation Letters. To be presented at ICRA 2024.	
2023	PPR: Physically Plausible Reconstruction from Monocular Videos, Gengshan Yang, Shuo Yang, John	Paris, France
	Zhang, Zachary Manchester, Deva Ramanan. IEEE Internation Conference on Computer Vision (oral)	
2023	Robust Low-Drift Multi-Sensor Visual-Inertial-Leg Odometry for Legged Robots, Shuo Yang, Zixin	
	Zhang, Ibrahima Sow, John Zhang, Zachary Manchester. under review at T-RO	
2023	Fast Contact-Implicit Model-Predictive Control, Simon LeCleac'h*, Taylor Howell*, Shuo Yang, Chiyen Lee,	
	John Zhang, Arun Bishop, Mac Schwager, Zachary Manchester. IEEE Transactions on Robotics	
2023	Heterogeneous Policy Networks for Composite Robot Team Communication and Coordination,	
	Esmaeil Seraj, Rohan Paleja, Luis Pimentel, Kin Man Lee, Zheyuan Wang, Daniel Martin, Matthew Sklar, John	
	Zhang, Zahi Kakish, Matthew Gombolay. under review at T-RO	
	Mediating between Contact Feasibility and Robustness of Trajectory Optimization through Chance	
2022	Complementarity Constraints, Luke Drnach*, John Zhang*, Ye Zhao (*equal contribution). Frontiers in	
	Robotics and AI	

Talks and Presentations _____

2024	SLoMo: A General System for Legged Robot Motion Imitation from Casual Videos, International Conference on Robotics and Automation (ICRA)	Yokohama, Japan	
2023	PPR: Physically Plausible Reconstruction from Monocular Videos, International Conference on Computer Vision (ICCV)	Paris, France	
2023	SLoMo: A General System for Legged Robot Motion Imitation from Casual Videos, Workshop on Model-based Optimization for Robotics	Online	
2021	Can Chance-Constrained Contact Uncertainty Quantification Improve Feasibility of Robust Trajectory Optimization?, Dynamic Walking	Online	
Honors and Awards			
2020 2018-202	President's Undergraduate Research Fellowship Award , Georgia Institute of Technology 1 Faculty Honors, Georgia Institute of Technology	Atlanta, GA Atlanta, GA	

Academic Services

- Reviewer, ICRA and RA-L 2023
- 2022 Reviewer, Frontiers in Robotics and AI

Mentoring_____

Crhis Wu, Now an undergraduate student in Aerospace Engineering at Georgia Tech Karthik Shaji, Now an undergraduate student in Aerospace Engineering at Georgia Tech

Skills_____

Programming Python, MATLAB, Julia, C++, Java

Software Packages Latex, Git, Linux, SNOPT, ROS, Adobe Illustrator, Torch, TensorFlow, Deep Graph Library, Simulink, MuJoCo, IssacGym Relevant Courses Machine learning, Computer Vision, Optimal Control, Rigid Body Dynamics, Robot Learning